Artificial Intelligence in Oncological Hybrid Imaging

Rofo. 2023 Feb;195(2):105-114. doi: 10.1055/a-1909-7013. Epub 2022 Sep 28.

Abstract

Background: Artificial intelligence (AI) applications have become increasingly relevant across a broad spectrum of settings in medical imaging. Due to the large amount of imaging data that is generated in oncological hybrid imaging, AI applications are desirable for lesion detection and characterization in primary staging, therapy monitoring, and recurrence detection. Given the rapid developments in machine learning (ML) and deep learning (DL) methods, the role of AI will have significant impact on the imaging workflow and will eventually improve clinical decision making and outcomes.

Methods and results: The first part of this narrative review discusses current research with an introduction to artificial intelligence in oncological hybrid imaging and key concepts in data science. The second part reviews relevant examples with a focus on applications in oncology as well as discussion of challenges and current limitations.

Conclusion: AI applications have the potential to leverage the diagnostic data stream with high efficiency and depth to facilitate automated lesion detection, characterization, and therapy monitoring to ultimately improve quality and efficiency throughout the medical imaging workflow. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based therapy guidance in oncology. However, significant challenges remain regarding application development, benchmarking, and clinical implementation.

Key points: · Hybrid imaging generates a large amount of multimodality medical imaging data with high complexity and depth.. · Advanced tools are required to enable fast and cost-efficient processing along the whole radiology value chain.. · AI applications promise to facilitate the assessment of oncological disease in hybrid imaging with high quality and efficiency for lesion detection, characterization, and response assessment. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based oncological therapy guidance.. · Selected applications in three oncological entities (lung, prostate, and neuroendocrine tumors) demonstrate how AI algorithms may impact imaging-based tasks in hybrid imaging and potentially guide clinical decision making..

Citation format: · Feuerecker B, Heimer M, Geyer T et al. Artificial Intelligence in Oncological Hybrid Imaging. Fortschr Röntgenstr 2023; 195: 105 - 114.

Hintergrund: Der Stellenwert künstlicher Intelligenz (KI) hat in der medizinischen Bildgebung in den letzten Jahren deutlich zugenommen. Aufgrund der enormen Datenmengen und strukturierbaren Aufgaben im diagnostischen Workflow hat die KI in der onkologischen Hybridbildgebung besonders vielversprechende Anwendungsgebiete für die Läsionsdetektion, die Läsionscharakterisierung und die Therapiebeurteilung. Vor dem Hintergrund rasanter Entwicklungen im Bereich des Machine Learning (ML) und des Deep Learning (DL) ist von einer zunehmenden Bedeutung in der onkologischen Hybridbildgebung auszugehen mit Potenzial, die klinische Therapiesteuerung und patientenrelevante Ergebnisse zu verbessern.

Methode und ergebnisse: Diese narrative Übersichtsarbeit fasst die Evidenz in verschiedenen aufgabenbezogenen Anwendungen der Bildanalyse von KI im Bereich der onkologischen Hybridbildgebung zusammen. Nach Einführung in das Thema der KI werden ausgewählte Beispiele exploriert, vor dem Hintergrund aktueller Herausforderungen und im Hinblick auf die klinische Relevanz in der Therapiesteuerung diskutiert.

Schlussfolgerung: Der Einsatz von KI bietet vielversprechende Anwendungen der Detektion, der Charakterisierung und der longitudinalen Therapiebeurteilung im Bereich der onkologischen Hybridbildgebung. Schlüsselherausforderungen liegen in den Bereichen der Entwicklung von Algorithmen, der Validierung und der klinischen Implementierung.

Kernaussagen: · Mit der onkologischen Hybridbildgebung werden große Datenvolumen aus 2 bildgebenden Modalitäten erzeugt, deren strukturierte Analyse komplex ist.. · Für die Datenanalyse werden neue Methoden benötigt, um eine schnelle und kosteneffiziente Beurteilung in allen Aspekten der diagnostischen Wertschöpfungskette zu ermöglichen.. · KI verspricht, die diagnostische Auswertung der onkologischen Hybridbildgebung zu vereinfachen und wesentliche Verbesserungen in Qualität und Effizienz bei der Erkennung, Charakterisierung und dem longitudinalen Monitoring onkologischer Erkrankungen zu ermöglichen. Ziel ist reproduzierbare, strukturierte, quantitative diagnostische Daten für die evidenzbasierte onkologische Therapiesteuerung zu generieren.. · Selektierte Anwendungsbeispiele in 3 ausgewählten Tumorentitäten (Lungenkarzinom, Prostatakarzinom, Neuroendokrine Tumore) zeigen wie KI-gestützte Applikationen einen wesentlichen Beitrag in der automatisierten Bildanalyse leisten und eine weitere Individualisierung von Therapien ermöglichen könnten..

Publication types

  • Review

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Humans
  • Machine Learning
  • Male
  • Medical Oncology
  • Multimodal Imaging