Electrophilic Hydrazination of Cyclopropanols Using Azodicarboxylates via Copper(II) Catalysis: An Umpolung Strategy to Access β-Hydrazino Ketone Motifs

J Org Chem. 2022 Nov 4;87(21):14596-14608. doi: 10.1021/acs.joc.2c01980. Epub 2022 Oct 3.

Abstract

The scope of an umpolung approach to expand synthetic access to bifunctional γ-keto hydrazine intermediates via electrophilic amination of β-homoenolates derived from cyclopropanol precursors that took advantage of azodicarboxylates or azodicarboxamides as electron-deficient nitrogen sources was examined. This new synthetic procedure avails commercially available or readily accessible starting materials along with a ligand-free Cu(II) salt as an inexpensive catalyst. Using this operationally simple reaction, which proceeds under mild conditions (open-flask and ambient temperature) and is suitable for multigram scale, preparative applications were established with a range of aryl- and alkyl-substituted cyclopropanols and azodicarboxylate/azodicarboxamide substrates (26 examples, 74-95% yields). Further, the obtained products have been shown to provide convenient synthetic access to γ-hydroxy hydrazide, γ-amino hydrazide, and heterocyclic derivatives.

MeSH terms

  • Catalysis
  • Copper*
  • Ketones*
  • Molecular Structure

Substances

  • cyclopropanol
  • Copper
  • Ketones