Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects

ACS Appl Mater Interfaces. 2022 Oct 19;14(41):47052-47065. doi: 10.1021/acsami.2c13557. Epub 2022 Oct 4.

Abstract

The host immune response to biomaterials is critical for determining scaffold fate and bone regeneration outcomes. Three-dimensional (3D) bioprinted scaffolds encapsulated with living cells can improve the inflammatory microenvironment and further accelerate bone repair. Here, we screened and adopted 8% methacrylamidated gelatin (GelMA)/1% methacrylamidated hyaluronic acid (HAMA) as the encapsulation system for rat bone marrow-derived macrophages (BMMs) and 3% Alginate/0.5 mg/mL graphene oxide (GO) as the encapsulation system for rat bone mesenchymal stem cells (BMSCs), thus forming a dual-channel bioprinting scaffold. The 8% GelMA/1% HAMA/3% Alginate/0.5 mg/mL GO (8/1/3/0.5) group could form a scaffold with a stable structure, good mechanical properties, and satisfied biocompatibility. When exploring the crosstalk between BMMs and BMSCs in vitro, we found that BMSCs could promote the polarization of BMMs to M2 type at the early stage, reduce the pro-inflammatory gene expression, and increase anti-inflammatory gene expression; conversely, BMMs can promote the osteogenic differentiation of BMSCs. In addition, in the model of rat calvarial defects, the dual-channel scaffold encapsulated with BMMs and BMSCs was more effective than the single-cell scaffold and the acellular scaffold. The paracrine of BMMs and BMSCs in the biodegradable dual-channel scaffold effectively promoted the M2-type polarization of macrophages in the microenvironment of early bone defects, avoided excessive inflammatory responses, and further promoted bone repair. In conclusion, our findings suggested that using 3D bioprinting to simultaneously encapsulate two primary cells of BMMs and BMSCs in a dual-channel system may be an effective way to promote bone repair from the perspective of early immune regulation and late induction of osteogenesis.

Keywords: bone regeneration; inflammation regulation; macrophage polarization; rat calvarial defect; three-dimensional bioprinting.

MeSH terms

  • Alginates / pharmacology
  • Animals
  • Biocompatible Materials / metabolism
  • Biocompatible Materials / pharmacology
  • Bioprinting*
  • Bone Regeneration
  • Cell Differentiation
  • Gelatin / chemistry
  • Gelatin / pharmacology
  • Hyaluronic Acid / metabolism
  • Hyaluronic Acid / pharmacology
  • Macrophages / metabolism
  • Mesenchymal Stem Cells*
  • Osteogenesis
  • Rats
  • Tissue Scaffolds / chemistry

Substances

  • Gelatin
  • Hyaluronic Acid
  • Biocompatible Materials
  • graphene oxide
  • Alginates