Human-machine interfaces (HMIs) enable users to interact with machines, thus playing a significant role in artificial intelligence, virtual reality, and the metaverse. Conventional HMIs are based on bulky and rigid electronic devices, seriously limiting their ductility, damage reconfiguration, and multifunctionality. In terms of replacing conventional HMIs, artificial bionic skins with good ductility, self-reparation, and multisensory ability are promising candidates. Still, they in their present form require innovations in mechanical and sensory properties, especially damage recovery and environmental stability, which seriously affect the service life and result in tons of electric waste. Herein, we present a new type of artificial bionic skin with excellent mechanical performance (>13,000% strain), high environmental stability (-80 to 80 °C), and multiple sensory properties toward strain, stress, temperature, solvent, and bioelectricity. Besides, this new type of artificial bionic skin also exhibits effective reconfiguration ability after damage and recyclability. The as-prepared artificial bionic skin was used as an interactive HMI to collect and distinguish the different sensory stimuli. The electronics assembled by HMI with artificial bionic skin can adhere compliantly on the human body for wireless motion capturing and sensing via Bluetooth, Wi-Fi, and the Internet. With simple programming, complex human motions can be mimicked in real-time by robots.
Keywords: artificial bionic skins; damage reconfiguration; flexible electronics; human−machine interfaces; multisensing capabilities.