The extent and specificity of visual exploration determines the formation of recollected memories in complex scenes

J Vis. 2022 Oct 4;22(11):9. doi: 10.1167/jov.22.11.9.

Abstract

Our visual memories of complex scenes often appear as robust, detailed records of the past. Several studies have demonstrated that active exploration with eye movements improves recognition memory for scenes, but it is unclear whether this improvement is due to stronger feelings of familiarity or more detailed recollection. We related the extent and specificity of fixation patterns at encoding and retrieval to different recognition decisions in an incidental memory paradigm. After incidental encoding of 240 real-world scene photographs, participants (N = 44) answered a surprise memory test by reporting whether an image was new, remembered (indicating recollection), or just known to be old (indicating familiarity). To assess the specificity of their visual memories, we devised a novel report procedure in which participants selected the scene region that they specifically recollected, that appeared most familiar, or that was particularly new to them. At encoding, when considering the entire scene,subsequently recollected compared to familiar or forgotten scenes showed a larger number of fixations that were more broadly distributed, suggesting that more extensive visual exploration determines stronger and more detailed memories. However, when considering only the memory-relevant image areas, fixations were more dense and more clustered for subsequently recollected compared to subsequently familiar scenes. At retrieval, the extent of visual exploration was more restricted for recollected compared to new or forgotten scenes, with a smaller number of fixations. Importantly, fixation density and clustering was greater in memory-relevant areas for recollected versus familiar or falsely recognized images. Our findings suggest that more extensive visual exploration across the entire scene, with a subset of more focal and dense fixations in specific image areas, leads to increased potential for recollecting specific image aspects.

MeSH terms

  • Eye Movements
  • Humans
  • Memory
  • Mental Recall*
  • Photic Stimulation
  • Recognition, Psychology*