In the current study, the effect of torrefaction temperatures (125-175 °C) and catalyst quantity (5-15 g) on co-pyrolysis of torrefied sawdust (TSD) and polystyrene (PS) are investigated to obtain value-added products. The role of torrefaction in co-pyrolysis of TSD: PS was analyzed to understand the product yields, synergy, and energy consumption . As the torrefaction temperature increases, oil yield (48.3-59.6 wt%) and char yield (24.3-29 wt%) increase while gas yield (27.4-11.4 wt%) decreases. Catalytic co-pyrolysis showed a significant level of synergy when compared to non-catalytic co-pyrolysis. For the conversion (%), a positive synergy maximum (-2.6) exists at a torrefaction temperature of 175 °C and 15 g of KOH catalyst. To develop the model, polynomial regression-based machine learning was used to predict pyrolysisproduct yields and energy usage variables. The developed models showed significant prediction accuracy (R2 > 0.98), suggesting the experimental values and the predicted values matched well.
Keywords: Microwave-assisted pyrolysis; Polystyrene; Sawdust; Synergistic effect; Torrefaction.
Copyright © 2022 Elsevier Ltd. All rights reserved.