Introduction Strokes in young people require an extensive diagnostic workup to detect their possible several etiopathogenetic mechanisms. There is no consensus indicating what and when it should be tested. The clinical benefit and cost-effectiveness ratio of laboratory tests is unclear as well. Methods In one series of 104 consecutive juvenile ischemic stroke patients, under 45 years old, admitted between January 1, 2012, and December 31, 2017, we considered a wide panel of laboratory biomarkers exploring both the patient's basal status and specific risk factors for thrombotic disorders. To combine conventional and unconventional risk factors, structural defects, and other stroke-related diseases, we defined four categories of etiologic probability. We then studied the contribution of laboratory testing in changing the rate of "definite or probable stroke etiology" and the "proportion of patients with at least one additional risk factor" for stroke. Results The mere clinical assessment clarified stroke etiopathogenesis in 31% of cases. Abnormal values of the panel of biomarkers we considered were found in 30.1% of young ischemic strokes, while 11.5% of patients had unclear or borderline values. The benefit of laboratory assessment consisted of a relevant 14% gain in patients with a "definite or probable stroke etiology." Conclusion Several areas of uncertainty are still pending and herein discussed, such as the low re-testing rate during follow-up and the neglect of some relevant biomarkers. However, our results support the importance of laboratory testing in this setting. An improvement of diagnostic protocols in juvenile ischemic stroke would even increase their effectiveness, and this is still an unsolved issue in the field of cerebrovascular diseases. The same age limit, conventionally considered for juvenile stroke, could be better defined according to the effectiveness of both laboratory and clinical assessment in identifying unconventional stroke risk factors.
Keywords: clinical laboratory quality management; ischemic cerebrovascular disease; laboratory finding; serum biomarkers; stroke protocol; young onset stroke.
Copyright © 2022, Janes et al.