Chemical pollution is a major threat to marine ecosystems, and top predators such as most shark species are extremely vulnerable to being exposed and accumulating contaminants such as metals and persistent organic pollutants (POPs). This work aimed to study the degree, composition, and the sources of contamination in the blue shark (Prionace glauca) inhabiting the Northeast Atlantic, as well as the potential risk faced by human consumers. A total of 60 sharks were sampled in situ aboard fishing vessels, and the concentrations of a set of metals and POPs were analysed in various tissues and complemented with stable isotope analyses. High levels of contaminants were found in most sharks sampled. The concentrations of most metals were higher in the muscle when compared with the liver. Regarding the dangers to consumers posed by the concentrations of arsenic (As), mercury (Hg), and lead (Pb), over 75% of the sharks presented muscle concentrations of at least one contaminant above the legal limits for human consumption, and a risk assessment determined that consumption of meat of these sharks exceeding 0.07 Kg per week could potentially expose human consumers to dangerous amounts of methylmercury (MeHg). Additionally, the assessment of single contaminants may lead to an underestimation of the risk for the human health. Finally, the overall accumulation of contaminants seems to be mostly influenced by the sharks' geographical distribution, rather than sex, size, or trophic level of their prey.
Keywords: Elasmobranchs; Marine biomonitoring; Metals; Pollution; TXRF; human risk analysis.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.