Shared IGHV1-69-encoded neutralizing antibodies contribute to the emergence of L452R substitution in SARS-CoV-2 variants

Emerg Microbes Infect. 2022 Dec;11(1):2749-2761. doi: 10.1080/22221751.2022.2140611.

Abstract

SARS-CoV-2 variants continue to emerge facing established herd immunity. L452R, previously featured in the Delta variant, quickly emerged in Omicron subvariants, including BA.4/BA.5, implying a continued selection pressure on this residue. The underlying links between spike mutations and their selective pressures remain incompletely understood. Here, by analyzing 221 structurally characterized antibodies, we found that IGHV1-69-encoded antibodies preferentially contact L452 using germline-encoded hydrophobic residues at the tip of HCDR2 loop. Whereas somatic hypermutations or VDJ rearrangements are required to acquire L452-contacting hydrophobic residues for non-IGHV1-69 encoded antibodies. Antibody repertoire analysis revealed that IGHV1-69 L452-contacting antibody lineages are commonly induced among COVID-19 convalescents but non-IGHV1-69 encoded antibodies exhibit limited prevalence. In addition, we experimentally demonstrated that L452R renders most published IGHV1-69 antibodies ineffective. Furthermore, we found that IGHV1-69 L452-contacting antibodies are enriched in convalescents experienced Omicron BA.1 (without L452R) breakthrough infections but rarely found in Delta (with L452R) breakthrough infections. Taken together, these findings support that IGHV1-69 population antibodies contribute to selection pressure for L452 substitution. This study thus provides a better understanding of SARS-CoV-2 variant genesis and immune evasion.

Keywords: IGHV1-69; Immune evasion; L452R; SARS-CoV-2; Shared antibody response.

MeSH terms

  • Antibodies, Neutralizing*
  • Antibodies, Viral
  • COVID-19*
  • Humans
  • SARS-CoV-2 / genetics
  • Spike Glycoprotein, Coronavirus / genetics

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • Spike Glycoprotein, Coronavirus
  • spike protein, SARS-CoV-2

Supplementary concepts

  • SARS-CoV-2 variants

Grants and funding

This work supported by grants from National Natural Science Foundation of China (82201932, 82041014, 82061138006).