Mitochondria are essential organelles and crucial for cellular survival. Mitochondrial biogenesis and mitophagy are dynamic features that are essential for both maintaining the health of the mitochondrial network and cellular demands. The accumulation of damaged mitochondria has been shown to be related to a wide range of pathologies ranging from neurological to musculoskeletal. Mitophagy is the selective autophagy of mitochondria, eliminating dysfunctional mitochondria in cells by engulfment within double-membraned vesicles. Preeclampsia and low birth weight constitute prenatal complications during pregnancy and are leading causes of maternal and fetal mortality and morbidity. Both placental implantation and fetal growth require a large amount of energy, and a defect in the mitochondrial quality control mechanism may be responsible for the pathophysiology of these diseases. In this review, we compiled current studies investigating the role of BNIP3, DRAM1, and FUNDC1, mediators of receptor-mediated mitophagy, in the progression of preeclampsia and the role of mitophagy pathways in the pathophysiology of low birth weight. Recent studies have indicated that mitochondrial dysfunction and accumulation of reactive oxygen species are related to preeclampsia and low birth weight. However, due to the lack of studies in this field, the results are controversial. Therefore, mitophagy-related pathways associated with these pathologies still need to be elucidated. Mitophagy-related pathways are among the promising study targets that can reveal the pathophysiology behind preeclampsia and low birth weight.
Keywords: fetal growth restriction; low birth weight; mitochondria; mitophagy; perinatal complications; preeclampsia.