Condensed and Hydrolyzable Tannins for Reducing Methane and Nitrous Oxide Emissions in Dairy Manure-A Laboratory Incubation Study

Animals (Basel). 2022 Oct 21;12(20):2876. doi: 10.3390/ani12202876.

Abstract

The objectives of this study were to (1) examine the effects of plant condensed (CT) and hydrolyzable tannin (HT) extracts on CH4 and N2O emissions; (2) identify the reactions responsible for manure-derived GHG emissions, and (3) examine accompanying microbial community changes in fresh dairy manure. Five treatments were applied in triplicate to the freshly collected dairy manure, including 4% CT, 8% CT, 4% HT, 8% HT (V/V), and control (no tannin addition). Fresh dairy manure was placed into 710 mL glass incubation chambers. In vitro composted dairy manure samples were collected at 0, 24, 48, and 336 h after the start of incubation. Fluxes of N2O and CH4 were measured for 5-min/h for 14 d at a constant ambient incubation temperature of 39 °C. The addition of quebracho CT significantly decreased the CH4 flux rates compared to the tannin-free controls (215.9 mg/m2/h), with peaks of 75.6 and 89.6 mg/m2/h for 4 and 8% CT inclusion rates, respectively. Furthermore, CT significantly reduced cumulative CH4 emission by 68.2 and 57.3% at 4 and 8% CT addition, respectively. The HT treatments failed to affect CH4 reduction. However, both CT and HT reduced (p < 0.001) cumulative and flux rates of N2O emissions. The decrease in CH4 flux with CT was associated with a reduction in the abundance of Bacteroidetes and Proteobacteria.

Keywords: dairy cattle manure; greenhouse gas; methanogens; microbiome.

Grants and funding

This research received no external funding.