Rapid and reliable fungal identification is crucial to delineate infectious diseases, and to establish appropriate treatment for onychomycosis. Compared to conventional diagnostic methods, molecular techniques are faster and feature higher accuracy in fungal identification. However, in current clinical practice, molecular mycology is not widely available, and its practical applicability is still under discussion. This study summarizes the results of 16,094 consecutive nail specimens with clinical suspicion of onychomycosis. We performed PCR/sequencing on all primary nail specimens for which conventional mycological diagnostics remained inconclusive. In specimens with a positive direct microscopy but negative or contaminated culture, molecular mycology proved superior and specified a fungal agent in 65% (587/898). In 75% (443/587), the identified pathogen was a dermatophyte. Positive cultures for dermatophytes, yeasts and non-dermatophyte molds (NDMs) were concordant with primary-specimen-DNA PCR/sequencing in 83% (10/12), 34% (22/65) and 45% (76/169), respectively. Among NDMs, agreement was high for Fusarium spp. (32/40; 80%), but low for Penicillium spp. (5/25; 20%) and Alternaria spp. (1/20; 5%). This study underlines the improvement in diagnostic yield by fungal primary-specimen-DNA PCR/sequencing in the event of a negative or contaminated culture, as well as its significance for the diagnosis of dermatophyte and non-dermatophyte onychomycosis. Molecular mycology methods like PCR and DNA sequencing should complement conventional diagnostics in cases of equivocal findings, suspected NDM onychomycosis or treatment-resistant nail pathologies.
Keywords: NDM; PCR; Trichophyton; dermatophyte; fungal culture; molecular mycology; onychomycosis; sequencing; tinea pedis.