Vaccine development for Plasmodium vivax, an important human relapsing malaria, is lagging behind. In the case of the most deadly human malaria P. falciparum, unprecedented high levels of protection have been obtained by immunization with live sporozoites under accompanying chemoprophylaxis, which prevents the onset of blood-stage malaria. Such an approach has not been fully evaluated for relapsing malaria. Here, in the P. cynomolgi-rhesus macaque model for relapsing malaria, we employ the parasites' natural relapsing phenotype to self-boost the immune response against liver-stage parasites, following a single-shot high-dose live sporozoite vaccination. This approach resulted in sterile protection against homologous sporozoite challenge in three out of four animals in the group that was also exposed for several days to blood stages during primary infection and relapses. One out of four animals in the group that received continuous chemoprophylaxis to abort blood-stage exposure was also protected from sporozoite challenge. Although obtained in a small number of animals as part of a Proof-of-Concept study, these results suggest that limited blood-stage parasite exposure may augment protection in this model. We anticipate our data are a starting point for further research into correlates of protection and extrapolation of the single-shot approach to develop efficacious malaria vaccines against relapsing human malaria.
© 2022. The Author(s).