Patterning-mediated supramolecular assembly of lipids into nanopalms

iScience. 2022 Oct 13;25(11):105344. doi: 10.1016/j.isci.2022.105344. eCollection 2022 Nov 18.

Abstract

At nanoconfined interfaces, a micellar ink of lipids was programmed to transform into various secondary structures such as discs, sheets, or sheet and discs via patterning-mediated self-assembly facilitated by polymer pen lithography. Nanoconfinement with printing force, humidity, temperature, pattern size, and total printing time all governed the intramolecular assembly of lipids and determined their structural shape and size. For example, disc or sheet architectures self-organized to produce cochleates or discotic liquid crystals, respectively. In contrast, the combined structure of sheet and discs produced a novel supramolecular output referred to as "nanopalms". The mechanism of nanopalms formation and the origin of their stability were investigated and discussed. Post patterning treatment helped to transform the patterned discs into ribbons and sheets into cochleates that could facilitate the curling of ribbons along their folding direction in a programmed manner via intermolecular self-organization producing the nanopalms.

Keywords: Biomaterials; Chemistry; Materials science; Supramolecular chemistry.