A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis

Biosens Bioelectron. 2023 Jan 1:219:114846. doi: 10.1016/j.bios.2022.114846. Epub 2022 Oct 23.

Abstract

Wearable electrochemical biosensors for perspiration analysis offer a promising non-invasive biomarker monitoring method. Herein, a functionalized hybridized nanoporous carbon (H-NPC)-encapsulated flexible 3D porous graphene-based epidermal patch was firstly fabricated for monitoring sweat glucose, lactate, pH, and temperature using simple, cost-effective, laser-engraved, and spray-coating techniques. The fabricated H-NPC-modified electrode significantly increased electrochemical surface area and electrocatalytic activity. Within the physiological sweat range (0-1.5 mM), the second-generation glucose sensor exhibited an excellent sensitivity of 82.7 μAmM-1cm-2 with 0.025 μM LOD. Moreover, the lactate biosensor exhibited an extraordinary linear range (0-56 mM) response owing to the incorporation of an outer diffusion limiting layer (DLL) that controls the lactate flux reaching the enzyme with comparable sensitivity (204 nAmM-1cm-2) and LOD (4 μM). Finally, we employed an analytical correction approach incorporating pH and temperature adjustments during on-body tests. In addition to connecting various carbon-based materials to limitless metal-organic frameworks as a transduction material, our research also paves the way for enabling these sensors to operate on pH and T correction independently while delivering accurate results.

Keywords: 3D graphene; Hybridized nano-porous carbon; MOFs; Wearable device; ZIFs.