Active engineering and modulation of optical spectra in a remote and fully reversible light is urgently desired in photonics, chemistry, and materials. However, the real-time regulation of multiple optical information such as wavelength, bandwidth, reflectance, and polarization is still a longstanding issue due to the lack of an appropriate photoresponsive candidate. Herein, we propose an additional "degree-of-freedom (DOF)" in a photo-modulated soft helix, and build up an unprecedented inhomogeneous helical pitch length with light-reconfiguring property, fatigue resistance, and reversibility. For the working model, the intrinsic chiral photoswitch LBC5 is employed as an actuator to modulate the helical pitch length, which is proportional to the irradiation intensity, and the unique broadband absorbance photo-modulator BTA-C5 is incorporated as an attenuator of the transmitted light to decrease its intensity along the sample thickness, therefore successfully adding another controlled DOF on the pitch length distribution (i.e., homogeneous or inhomogeneous) apart from the common soft helix with only a single DOF on the pitch length. The absorbance photo-modulator BTA-C5 with a unique variable broadband absorption enables the light to reconfigure the helical pitch from homogeneous to inhomogeneous, thereby achieving the robust fatigue-resistance establishment of reversible spectral programming. The established light-reconfigurable inhomogeneous helical pitch with the photoresponsive modulator BTA-C5 can provide a breakthrough to control absorbance and chirality, especially for dynamically broadening and narrowing the bandwidth on demand, and further enable the ever-desired broadband NIR circularly polarized luminescence (CPL) with a high dissymmetry factor glum of up to 1.88. The cutting-edge photoswitchable inhomogeneous soft helical pitch provides access to multi-freedom control in soft materials, optics, biophotonics, and other relevant fields.