Silicone (polydimethylsiloxane) materials are widely used in various applications. Due to microbe adherence and biofilm formation at the surface of silicone materials, silicone materials must possess antibacterial properties. To achieve this, we prepared copper (Cu)−silicone composite membranes using a simple two-step process of immersion in iodine and copper sulfate solutions. Subsequent scanning electron microscopy revealed Cu nanoparticles (CuNPs) of 10 to 200 nanometers in diameter on the silicone membrane surface, which were identified as copper iodide using energy-dispersive X-ray spectroscopy. The mechanical strength of the material did not change significantly as a result of the two-step immersion treatment and the Cu/silicone membrane showed excellent antibacterial efficacy against Escherichia coli and Staphylococcus aureus, maintaining R > 2 even after a physical impact such as stomacher treatment. Additionally, the Cu ions eluted from the Cu/silicone membrane remained at very low concentrations, suggesting firm immobilization of CuNPs on the silicone membrane. This proposed antimicrobial treatment method does not require special equipment, can be performed at room temperature, and has the potential for use on silicone materials other than membranes.
Keywords: antibacterial activity; biofilm; copper; immersion process; iodine; nanoparticle; polydimethylsiloxane; silicone membrane.