Emerging research shows that microplastic pollution could be impacting seafloor ecosystem function, but this has been primarily demonstrated without environmental and ecological context. This causes uncertainty in the real-world effects of microplastic pollution and leaves out essential information guiding policy and mitigation. In this study, we take a well-supported sampling design and statistical approach commonly employed in benthic ecology to evaluate real-world effects of microplastic pollution on coastal, benthic ecosystem function. We utilised environmental gradients in the Waitemata Harbour of Auckland, New Zealand to evaluate the importance of commonly assessed biological, chemical, and geological sediment variables and the characteristics of microplastic contaminants in driving essential ecosystem functions. Our results showed that models including microplastic terms were more accurate and explained more variability than those without microplastic terms, highlighting that microplastics impact real-world seafloor ecosystem function. Specifically, microplastic fibers significantly influenced oxygen flux (p < 0.03) and the diverse forms of microplastics (i.e., richness) significantly influenced ammonium flux (p < 0.02). Additionally, interactions between microplastic fiber concentrations and mollusc abundances significantly contributed to oxygen flux (p < 0.02). These results provide the first evaluation of in situ relationships between microplastics and ecosystem function. Even more importantly, this study suggests the value of environmental and ecological context for addressing microplastic impacts on benthic ecosystems and argues for further field examination.
Keywords: Benthic; Coastal; Ecology; Ecosystem services; Estuarine; Marine.
Copyright © 2022 Elsevier B.V. All rights reserved.