Small RNA-seq dataset of wild type and 16C Nicotiana benthamiana leaves sprayed with naked dsRNA using the high-pressure spraying technique

Data Brief. 2022 Oct 27:45:108706. doi: 10.1016/j.dib.2022.108706. eCollection 2022 Dec.

Abstract

Double-stranded RNA (dsRNA) applications have emerged as promising alternatives to chemical plant pesticides. It has been proposed that the protective effect of dsRNA is mediated by the RNA interference (RNAi) mechanism. Small RNAs (sRNAs) are one of the landmarks of RNAi mechanisms. Two classes of sRNAs appear upon RNAi, triggered by dsRNA: The cleavage products of the dsRNA mapping directly to the dsRNA sequence and the transitive sRNAs mapping to the target transcript outside of the dsRNA sequence. Therefore, the sRNA-seq data obtained from dsRNA-treated plants have been exclusively analysed in the context of the target genes and the outcome has been considered essential to evaluate the underlying mechanism of dsRNA mediated plant protection. Using high-pressure spraying technology (HPST), we have applied a GFP targeting 139bp-long dsRNA on wild type (WT) and GFP expressing (16C) Nicotiana benthamiana plants in biological triplicates. As a control, we applied water with HPST on 16C N. benthamiana. We have acquired sRNA-seq data on the treated and control leaves 5 days post spraying. In this dataset, we have expanded our sRNA-seq analysis from the target GFP transgene sequence to the whole transcriptome of N. benthamiana to provide the community with a resource for the small RNA landscape after high-pressure spraying in 16C and WT samples. Furthermore, we have provided a comparison of sRNA landscape between WT and 16C lines.

Keywords: PTGS; RNAi; SIGS; dsRNA; exoRNA; sRNA-seq.