In the present study, the effect of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) was tested against memory impairment and sensitivity to nociception induced by intracerebroventricular injection of amyloid-beta peptide (Aβ) (25-35 fragment), 3 nmol/3 μl/per site in mice. Memory impairment was determined by the object recognition task (ORT) and nociception by the Von-Frey test (VFT). Aβ caused neuroinflammation with upregulation of glial fibrillary acidic protein (GFAP) (in hippocampus), nuclear factor-κB (NF-κB), and the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in cerebral cortex and hippocampus. Additionally, Aβ increased oxidant levels and lipid peroxidation in cerebral cortex and hippocampus, but decreased heme oxygenase-1 (HO-1) and peroxiredoxin-1 (Prdx1) expression in the hippocampus. Anti-neuroinflammatory effects of FSP were demonstrated by a decrease in the expression of GFAP and NF-κB in the hippocampus, as well as a decrease in proinflammatory cytokines in both the hippocampus and cerebral cortex FSP protected against oxidative stress by decreasing oxidant levels and lipid peroxidation and by increasing HO-1 and Prdx1 expressions in the hippocampus of mice. Moreover, FSP prevented the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the hippocampus of mice induced by Aβ. In conclusion, treatment with FSP attenuated memory impairment, nociception sensitivity by decreasing oxidative stress, and neuroinflammation in a mouse model of Alzheimer's disease.
Keywords: Alzheimer’s disease; Neuroinflammation; Organoselenium; Oxidative stress; Pain; Purine.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.