Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment

Drug Resist Updat. 2023 Jan:66:100904. doi: 10.1016/j.drup.2022.100904. Epub 2022 Nov 28.

Abstract

Lung cancer continues to be a malignant tumor with high mortality. Two obstacles interfere with curative therapy of lung cancer: (i) poor diagnosis at the early stages, as symptoms are not specific or asymptomatic; and (ii) invariably emerging drug resistance after treatment. Some factors contributing to drug resistance include preexisting genetic/genomic drug-resistant alteration(s); activation of adaptive drug resistance pathways; remodeling of the tumor microenvironment; and pharmacological mechanisms or activation of drug efflux pumps. Despite the mechanisms explored to better understand drug resistance, a gap remains between molecular understanding and clinical application. Therefore, facilitating the translation of basic science into the clinical setting is a great challenge. Nanomedicine has emerged as a promising tool for cancer treatment. Because of their excellent physicochemical properties and enhanced permeability and retention effects, nanoparticles have great potential to revolutionize conventional lung cancer diagnosis and combat drug resistance. Nanoplatforms can be designed as carriers to improve treatment efficacy and deliver multiple drugs in one system, facilitating combination treatment to overcome drug resistance. In this review, we describe the difficulties in lung cancer treatment and review recent research progress on nanoplatforms aimed at early diagnosis and lung cancer treatment. Finally, future perspectives and challenges of nanomedicine are also discussed.

Keywords: Diagnosis; Drug resistance; Lung cancer; Nanoparticles; Treatment.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Drug Delivery Systems
  • Drug Resistance, Neoplasm / genetics
  • Humans
  • Lung Neoplasms* / diagnosis
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Nanomedicine
  • Nanoparticles* / chemistry
  • Nanotechnology
  • Neoplasms* / drug therapy
  • Tumor Microenvironment

Substances

  • Antineoplastic Agents