As a member of the B-cell lymphoma 2 (Bcl-2) protein family, the myeloid leukemia cell differentiation protein (Mcl-1) can inhibit apoptosis and plays an active role in the process of tumor escape from apoptosis. Therefore, inhibition of Mcl-1 protein can effectively promote the apoptosis of tumor cells and may also reduce tumor cell resistance to drugs targeting other anti-apoptotic proteins. This research is dedicated to the development of Mcl-1 inhibitors, aiming to provide more references for lead compounds with different scaffolds for the development of targeted anticancer drugs. We obtained a series of small molecules with a common core skeleton through molecular docking from Specs database and searched the core structure in ZINC database for more similar small molecules. Collecting these small molecules for preliminary experimental screening, we found a batch of active compounds, and selected two small molecules with the strongest inhibitory activity on B16F10 cells: compound 7 and compound 1. Their IC50s are 7.86 ± 1.25 and 24.72 ± 1.94 μM, respectively. These two compounds were also put into cell scratch test for B16F10 cells and cell viability assay of other cell lines. Furthermore, through molecular dynamics (MD) simulation analysis, we found that compound 7 formed strong binding with the key P2, P3 pocket and ARG 263 of Mcl-1. Finally, ADME results showed that compound 7 performs well in terms of drug similarity. In conclusion, this study provides hits with co-scaffolds that may aid in the design of effective clinical drugs targeting Mcl-1 and the future drug development.
Keywords: Cancer; In vitro experiments; Mcl-1; Molecular docking; Molecular dynamics simulation.
Copyright © 2022 Elsevier Ltd. All rights reserved.