Irrigation and Crop Load Management Lessen Rain-Induced Cherry Cracking

Plants (Basel). 2022 Nov 26;11(23):3249. doi: 10.3390/plants11233249.

Abstract

The combined effects of deficit irrigation and crop load level on sweet cherry (Prunus avium L.) physiological and agronomic response were evaluated during the 2019 season in a commercial orchard located in southeastern Spain. Two irrigation treatments were imposed: (i) control treatment (CTL) irrigated above crop water requirements at 110% of crop evapotranspiration (ETC) and (ii) a deficit irrigation treatment (DI) irrigated at 70% ETC. Within each irrigation treatment, crop load was adjusted to three levels: 100% (natural crop load-high), 66% (medium crop load), and 33% (low crop load). The water relations results were more affected by the irrigation strategies applied than by the crop load management. The deficit irrigation strategy applied reduced soil water availability for DI trees, which led to a continuous decrease in their gas exchange and stem water potential. At harvest, the fruit water potential and osmotic potential of cherries from the DI treatment resulted in significantly lower values than those measured in cherries from CTL trees. On the other hand, both the irrigation strategies imposed and the crop load management used impacted fruit quality. Trees with the lowest level of crop load had fruits of greater size, regardless of the irrigation treatment assayed, and in the DI treatment, cherries from the trees with the lowest crop load were darker and more acidic than those from the trees with the highest crop load. Our results emphasize the different effects that rainfall before harvest has on mature cherries. Thus, cracked cherries at harvest represented 27.1% of the total yield of CTL trees while they were 8.3% of the total yield in DI trees. Cherries from CTL trees also showed a greater cracking index than those from DI trees. Moreover, a linear relationship between crop load and fruit cracked at harvest was observed, particularly for the CTL treatment; thus, the lower the crop load, the greater the proportion of cracked cherries.

Keywords: deficit irrigation; fruit and stem water potential; fruit quality; osmotic water potential; thinning; tree water status.