Purpose: A surgical navigation system helps surgeons understand anatomical structures in the operative field during surgery. Patient-to-image registration, which aligns coordinate systems between the CT volume and a positional tracker, is vital for accurate surgical navigation. Although a point-based rigid registration method using fiducials on the body surface is often utilized for laparoscopic surgery navigation, precise registration is difficult due to such factors as soft tissue deformation. We propose a method that compensates a transformation matrix computed using fiducials on the body surface based on the analysis of positional information in the database.
Methods: We built our database by measuring the positional information of the fiducials and the guidance targets in both the CT volume and positional tracker coordinate systems through previous surgeries. We computed two transformation matrices: using only the fiducials and using only the guidance targets in all the data in the database. We calculated the differences between the two transformation matrices in each piece of data. The compensation transformation matrix was computed by averaging these difference matrices. In this step, we selected the data from the database based on the similarity of the fiducials and the configuration of the guidance targets.
Results: We evaluated our proposed method using 20 pieces of data acquired during laparoscopic gastrectomy for gastric cancer. The locations of blood vessels were used as guidance targets for computing target registration error. The mean target registration errors significantly decreased from 33.0 to 17.1 mm before and after the compensation.
Conclusion: This paper described a registration error compensation method using a database for image-guided laparoscopic surgery. Since our proposed method reduced registration error without additional intraoperative measurements during surgery, it increases the accuracy of surgical navigation for laparoscopic surgery.
Keywords: Computer-aided surgery; Laparoscopy; Registration; Surgical navigation.
© 2022. CARS.