Electrochemistry can provide an efficient and sustainable way to treat environmental waters polluted by chlorinated organic compounds. However, the electrochemical valorization of 1,2-dichloroethane (DCA) is currently challenged by the lack of a catalyst that can selectively convert DCA in aqueous solutions into ethylene. Here we report a catalyst comprising cobalt phthalocyanine molecules assembled on multiwalled carbon nanotubes that can electrochemically decompose aqueous DCA with high current and energy efficiencies. Ethylene is produced at high rates with unprecedented ~100% Faradaic efficiency across wide electrode potential and reactant concentration ranges. Kinetic studies and density functional theory calculations reveal that the rate-determining step is the first C-Cl bond breaking, which does not involve protons-a key mechanistic feature that enables cobalt phthalocyanine/carbon nanotube to efficiently catalyse DCA dechlorination and suppress the hydrogen evolution reaction. The nanotubular structure of the catalyst enables us to shape it into a flow-through electrified membrane, which we have used to demonstrate >95% DCA removal from simulated water samples with environmentally relevant DCA and electrolyte concentrations.
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.