A deep learning platform to assess drug proarrhythmia risk

Cell Stem Cell. 2023 Jan 5;30(1):86-95.e4. doi: 10.1016/j.stem.2022.12.002. Epub 2022 Dec 22.

Abstract

Drug safety initiatives have endorsed human iPSC-derived cardiomyocytes (hiPSC-CMs) as an in vitro model for predicting drug-induced cardiac arrhythmia. However, the extent to which human-defined features of in vitro arrhythmia predict actual clinical risk has been much debated. Here, we trained a convolutional neural network classifier (CNN) to learn features of in vitro action potential recordings of hiPSC-CMs that are associated with lethal Torsade de Pointes arrhythmia. The CNN classifier accurately predicted the risk of drug-induced arrhythmia in people. The risk profile of the test drugs was similar across hiPSC-CMs derived from different healthy donors. In contrast, pathogenic mutations that cause arrhythmogenic cardiomyopathies in patients significantly increased the proarrhythmic propensity to certain intermediate and high-risk drugs in the hiPSC-CMs. Thus, deep learning can identify in vitro arrhythmic features that correlate with clinical arrhythmia and discern the influence of patient genetics on the risk of drug-induced arrhythmia.

Keywords: AI; CiPA; artificial; cardiomyocytes; deep learning; drug screening; drug-induced arrhythmia; iPSC; induced pluripotent stem cells; intelligence; safety pharmacology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials
  • Arrhythmias, Cardiac / chemically induced
  • Deep Learning*
  • Humans
  • Induced Pluripotent Stem Cells* / physiology
  • Myocytes, Cardiac / physiology
  • Torsades de Pointes* / chemically induced