Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gestation by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pregnancy, a prediction model using nine urine metabolites had the highest accuracy and was validated on an independent cohort (area under the receiver-operating characteristic curve [AUC] = 0.88, 95% confidence interval [CI] [0.76, 0.99] cross-validated; AUC = 0.83, 95% CI [0.62,1] validated). Univariate analysis demonstrated statistical significance of identified metabolites. An integrated multiomics model further improved accuracy (AUC = 0.94). Several biological pathways were identified including tryptophan, caffeine, and arachidonic acid metabolisms. Integration with immune cytometry data suggested novel associations between immune and proteomic dynamics. While further validation in a larger population is necessary, these encouraging results can serve as a basis for a simple, early diagnostic test for preeclampsia.
Keywords: biomarkers; machine learning; multiomics; predictive modeling; preeclampsia.
© 2022 The Authors.