On bus ridership and frequency

Transp Res Part A Policy Pract. 2021 Jun:148:140-154. doi: 10.1016/j.tra.2021.03.005. Epub 2021 Apr 12.

Abstract

Even before the start of the COVID-19 pandemic, bus ridership in the United States had attained its lowest level since 1973. If transit agencies hope to reverse this trend, they must understand how their service allocation policies affect ridership. This paper is among the first to model ridership trends on a hyper-local level over time. A Poisson fixed-effects model is developed to evaluate the ridership elasticity to frequency on weekdays using passenger count data from Portland, Miami, Minneapolis/St-Paul, and Atlanta between 2012 and 2018. In every agency, ridership is found to be elastic to frequency when observing the variation between individual route-segments at one point in time. In other words, the most frequent routes are already the most productive in terms of passengers per vehicle-trip. When observing the variation within each route-segment over time, however, ridership is inelastic; each additional vehicle-trip is expected to generate less ridership than the average bus already on the route. In three of the four agencies, the elasticity is a decreasing function of prior frequency, meaning that low-frequency routes are the most sensitive to changes in frequency. This paper can help transit agencies anticipate the marginal effect of shifting service throughout the network. As the quality and availability of passenger count data improve, this paper can serve as the methodological basis to explore the dynamics of bus ridership.

Keywords: Bus; Elasticity; Fixed-effects; Headway; Public transit; Reliability; Service allocation.