From Benzonitrile to Dicyanobenzenes: The Effect of an Additional CN Group on the Thermochemistry and Negative Ion Photoelectron Spectra of Dicyanobenzene Radical Anions

J Phys Chem A. 2023 Jan 12;127(1):181-194. doi: 10.1021/acs.jpca.2c07655. Epub 2023 Jan 2.

Abstract

The negative ion photoelectron spectra of 1,2-dicyanobenzene (o-DCNB), 1,3-dicyanobenzene (m-DCNB), and 1,4-dicyanobenzene (p-DCNB) radical anions (DCNB·-), acquired through the computation of Frack-Condon (FC) factors, are presented. The FC calculations utilize harmonic frequencies and normal mode vectors derived from density functional theory at the B3LYP/aug-cc-pVQZ basis set. All the totally symmetric vibrational modes are treated with Duschinsky rotations to yield neutral DCNBs in their singlet (So) and lowest triplet (T1) states, following an electron removal from the doublet anionic ground state. For the So state, the adiabatic electron affinities (EAs) for o-, m-, and p-DCNB are 1.179, 1.103, and 1.348 eV. The EAs for the lowest T1 state in o-, m-, and p-DCNB are 4.151, 4.185, and 4.208 eV, resulting in an So-T1 energy difference (ΔEST) of 2.973, 3.082, and 2.860 eV. A vibrational analysis reveals evidence of FC activity involving ring distortion, C-N bending, and ring C═C stretching vibrational progressions in both the So and T1 states. With the detection of cyanonaphthalene (C10H7CN) and cyanoindene (C9H7CN) in the interstellar medium (ISM), our results highlight the extent to which replacing a single hydrogen on an aromatic molecule with a cyano group, C≡N, can alter the vibrational structure of the molecule/radical anion. As such, dicyano-polyaromatic hydrocarbons may be reasonably robust in the ISM, making it appealing to search for them in future interstellar detection missions.