First sex modification case in equine cloning

PLoS One. 2023 Jan 4;18(1):e0279869. doi: 10.1371/journal.pone.0279869. eCollection 2023.

Abstract

Somatic cell nuclear transfer (SCNT) is an asexual reproductive technique where cloned offspring contain the same genetic material as the original donor. Although this technique preserves the sex of the original animal, the birth of sex-reversed offspring has been reported in some species. Here, we report for the first time the birth of a female foal generated by SCNT of a male nuclear donor. After a single SCNT procedure, 16 blastocysts were obtained and transferred to eight recipient mares, resulting in the birth of two clones: one male and one female. Both animals had identical genetic profiles, as observed in the analysis of 15-horse microsatellite marker panel, which confirmed they are indeed clones of the same animal. Cytogenetic analysis and fluorescent in situ hybridization using X and Y specific probes revealed a 63,X chromosome set in the female offspring, suggesting a spontaneous Y chromosome loss. The identity of the lost chromosome in the female was further confirmed through PCR by observing the presence of X-linked markers and absence of Y-linked markers. Moreover, cytogenetic and molecular profiles were analyzed in blood and skin samples to detect a possible mosaicism in the female, but results showed identical chromosomal constitutions. Although the cause of the spontaneous chromosome loss remains unknown, the possibility of equine sex reversal by SCNT holds great potential for the preservation of endangered species, development of novel breeding techniques, and sportive purposes.

MeSH terms

  • Animals
  • Cloning, Molecular
  • Cloning, Organism* / veterinary
  • Female
  • Horses / genetics
  • In Situ Hybridization, Fluorescence
  • Male
  • Nuclear Transfer Techniques* / veterinary
  • X Chromosome / genetics

Grants and funding

The authors received no specific funding for this work.