The existence of residences and roads is an important way in which human activity affects wind erosion in arid and semiarid environments. Studies assessing the impact of these elements on wind erosion have only focused on limited plots, and their threat of erosion to the surrounding environment has been ignored by many studies. This study was based on spatially overlayed analysis of independent wind erosion distribution simulated by the revised wind erosion equation (RWEQ) and remote-sensing-image-derived residence and road distribution data. Wind erosion at different distances from residences and roads was quantified at the landscape scale of a typical temperate grassland ecosystem, explicitly demonstrating the crucial impacts of both elements on wind erosion. The results showed that wind erosion weakened as the distance from residences and roads increased due to the priority pathways of human activities, and the wind erosion around the residence was more severe than around the road. Human activities in the buffer zones 0-200 m from the residences most frequently caused severe wind erosion, with a wind soil loss of 25 t ha-1 yr-1 and a wind soil loss of approximately 5.25 t ha-1 yr-1 for 0-60 m from the roads. The characteristics of wind erosion variation in the buffer zones were also affected by residence size and the environments in which the residences were located. The variation in wind erosion was closely related to the road levels. Human activities intensified wind erosion mainly by affecting the soil and vegetation around residences and roads. Ecological management should not be limited to residences and roads but should also protect the surrounding environments. The findings of this study are aimed towards a spatial perspective that can help implement rational and effective environmental management measures for the sustainability of wind-eroded ecosystems.
Keywords: ecosystem management; residence; road; temperate grassland; wind erosion.