On-Surface Synthesis of Self-Assembled Covalently Linked Wavy Chains with Site-Selective Conformational Switching

J Am Chem Soc. 2023 Jan 25;145(3):1660-1667. doi: 10.1021/jacs.2c09857. Epub 2023 Jan 12.

Abstract

Conformational arrangements in polymers on surfaces determine the overall shape as well as the potential properties. It is generally believed that conformational diversity leads to uncontrollable or disordered structures in on-surface synthesis. However, in this study, we obtain two well-ordered self-assembled covalently linked wavy chains with site-selective conformational switching via the Ullmann reaction of 1,2-bis(3-bromophenyl)ethane with multiple conformations on Ag(111). Two kinds of wavy chains exhibit distinct conformational arrangements, where chain I contains one repeating unit conformation of -cis-trans1-cis-trans1-cis-cis-trans1-, while the adjacent parallel parts in wavy chain II have two different conformational arrangements of -cis-cis-trans1- and -cis-cis-trans2-. Wavy chains coassemble with dissociated bromine atoms, suggesting that the Br···H-C interactions between Br atoms and molecular chains are crucial for the construction of ordered wavy chains. High-resolution scanning tunneling microscopy is employed to reveal the surface reaction process at the molecular scale. In depth growth mechanism analysis combined with density functional theory calculations unveils that the substrate also plays an important role in the fabrication of well-ordered wavy chains. The present work extends the surface reaction of conformational flexible precursors.