Objective: Delayed cerebral ischemia (DCI) is a serious complication of aneurysmal subarachnoid hemorrhage (aSAH), which is responsible for significant death and disability. The dynamic balance between the production and elimination of reactive oxygen species (ROS) in patients with DCI is suspected be shifted to favor ROS formation. The authors assessed the relationship between F2-isoprostanes (F2-IsoPs), oxidative stress biomarkers, and glucose-6-phosphate dehydrogenase (G6PD), which are responsible for nicotinamide adenine dinucleotide phosphate (NADPH) production for glutathione system function, with post-aSAH DCI.
Methods: The authors assessed 45 aSAH patients for F2-IsoP and G6PD concentration using commercial ELISA on days 2, 4, and 6 after aSAH. The authors examined the correlation between plasma F2-IsoP and G6PD concentrations and clinical factors with DCI occurrence and aSAH outcome.
Results: Expectedly, the most important clinical predictors of DCI were Hunt and Hess grade and modified Fisher (mFisher) grade. Plasma F2-IsoP and G6PD concentrations were greater in aSAH patients than the control group (p < 0.01). F2-IsoP concentrations were greater and G6PD concentrations were lower in patients with DCI than those without (p < 0.01). Plasma F2-IsoP and G6PD concentrations on day 2 were correlated with DCI occurrence (p < 0.01). Plasma F2-IsoP concentrations on days 2 and 6 were correlated with outcome at 1 and 12 months (p < 0.01).
Conclusions: Decreased G6PD indirectly informs the reduced antioxidant response, especially for the glutathione system. G6PD concentration was lower in patients with DCI than those without, which may explain the increased F2-IsoP concentrations. mFisher grade, plasma F2-IsoP concentration, and G6PD concentration on day 2 after aSAH, in combination, may serve as predictors of DCI. Further research is necessary to investigate the therapeutic utility of F2-IsoPs and antioxidants in clinical practice.
Keywords: 8-iso prostaglandin F2α; aneurysm; delayed cerebral ischemia; glucose-6-phosphate dehydrogenase; subarachnoid hemorrhage; vascular disorders.