Solid-State Investigation, Storage, and Separation of Pyrophoric PH3 and P2 H4 with α-Mg Formate

Angew Chem Int Ed Engl. 2023 Mar 20;62(13):e202217534. doi: 10.1002/anie.202217534. Epub 2023 Feb 17.

Abstract

Phosphane, PH3 -a highly pyrophoric and toxic gas-is frequently contaminated with H2 and P2 H4 , which makes its handling even more dangerous. The inexpensive metal-organic framework (MOF) magnesium formate, α-[Mg(O2 CH)2 ], can adsorb up to 10 wt % of PH3 . The PH3 -loaded MOF, PH3 @α-[Mg(O2 CH)2 ], is a non-pyrophoric, recoverable material that even allows brief handling in air, thereby minimizing the hazards associated with the handling and transport of phosphane. α-[Mg(O2 CH)2 ] further plays a critical role in purifying PH3 from H2 and P2 H4 : at 25 °C, H2 passes through the MOF channels without adsorption, whereas PH3 adsorbs readily and only slowly desorbs under a flow of inert gas (complete desorption time≈6 h). Diphosphane, P2 H4 , is strongly adsorbed and trapped within the MOF for at least 4 months. P2 H4 @α-[Mg(O2 CH)2 ] itself is not pyrophoric and is air- and light-stable at room temperature.

Keywords: Gas Purification; Gas Storage; MOF Chemistry; Phosphane; Single Crystal Analysis.