Photocatalytic nitrogen reduction reaction (PNRR) is emerging as a sustainable ammonia synthesis approach to meet global carbon neutrality. Porous framework materials with well-designed structures have great opportunities in PNRR; however, they suffer from unsatisfactory activity in the conventional gas-in-solvent system (GIS), owing to the hindrance of nitrogen utilization and strong competing hydrogen evolution caused by overwhelming solvent. In this study, porous framework materials are combined with a novel "solvent-in-gas" system, which can bring their superiority into full play. This system enables photocatalysts to directly operate in a gas-dominated environment with a limited proton source uniformly suspended in it, achieving the accumulation of high-concentrated nitrogen within porous framework while efficiently restricting the solvent-photocatalyst contact. An over eightfold increase in ammonia production rate (1820.7 µmol g-1 h-1 ) compared with the conventional GIS and an apparent quantum efficiency as high as ≈0.5% at 400 nm are achieved. This system-level strategy further finds applicability in photocatalytic CO2 reduction, featuring it as a staple for photosynthetic methodology.
Keywords: ammonia synthesis; carbon dioxide reduction; photocatalysis; porous framework materials; solvent-in-gas systems.
© 2023 Wiley-VCH GmbH.