Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media

Sci Bull (Beijing). 2021 Feb 15;66(3):257-264. doi: 10.1016/j.scib.2020.06.036. Epub 2020 Jun 26.

Abstract

The rational design and construction of inexpensive and highly active electrocatalysts for hydrogen evolution reaction (HER) is of great importance for water splitting. Herein, we develop a facile approach for preparation of porous carbon-confined Ru-doped Cu nanoparticles (denoted as Ru-Cu@C) by direct pyrolysis of the Ru-exchanged Cu-BTC metal-organic framework. When served as the electrocatalyst for HER, strikingly, the obtained Ru-Cu@C catalyst exhibits an ultralow overpotential (only 20 mV at 10 mA cm-2) with a small Tafel slope of 37 mV dec-1 in alkaline electrolyte. The excellent performance is comparable or even superior to that of commercial Pt/C catalyst. Density functional theory (DFT) calculations confirm that introducing Ru atoms into Cu nanocrystals can significantly alter the desorption of H2 to achieve a close-to-zero hydrogen adsorption energy and thereby boost the HER process. This strategy gives a fresh impetus to explore low-cost and high-performance catalysts for HER in alkaline media.

Keywords: Alkaline media; Hydrogen adsorption energy; Hydrogen evolution reaction; Metal–organic framework; Ru-doped Cu nanoparticles.