Dissociative Transition State in Hepatitis Delta Virus Ribozyme Catalysis

J Am Chem Soc. 2023 Feb 8;145(5):2830-2839. doi: 10.1021/jacs.2c10079. Epub 2023 Jan 27.

Abstract

Ribonucleases and small nucleolytic ribozymes are both able to catalyze RNA strand cleavage through 2'-O-transphosphorylation, provoking the question of whether protein and RNA enzymes facilitate mechanisms that pass through the same or distinct transition states. Here, we report the primary and secondary 18O kinetic isotope effects for hepatitis delta virus ribozyme catalysis that reveal a dissociative, metaphosphate-like transition state in stark contrast to the late, associative transition states observed for reactions catalyzed by specific base, Zn2+ ions, or ribonuclease A. This new information provides evidence for a discrete ribozyme active site design that modulates the RNA cleavage pathway to pass through an altered transition state.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Catalysis
  • Catalytic Domain
  • Hepatitis Delta Virus / genetics
  • Hepatitis Delta Virus / metabolism
  • Kinetics
  • Nucleic Acid Conformation
  • RNA / chemistry
  • RNA, Catalytic* / chemistry

Substances

  • RNA, Catalytic
  • RNA