G protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we visualized the impact of anionic lipids on the function-related conformational equilibria of the human A 2A adenosine receptor (A 2A AR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids. Anionic lipids primed the receptor to form complexes with G proteins through a conformational selection process. Without anionic lipids, signaling complex formation proceeded through a less favorable induced fit mechanism. In computational models, anionic lipids mimicked interactions between a G protein and positively charged residues in A 2A AR at the receptor intracellular surface, stabilizing a pre-activated receptor conformation. Replacing these residues strikingly altered the receptor response to anionic lipids in experiments. High sequence conservation of the same residues among all GPCRs supports a general role for lipid-receptor charge complementarity in signaling.