Bone tissue engineering (BTE), based on the perfect combination of seed cells, scaffold materials and growth factors, has shown unparalleled potential in the treatment of bone defects and related diseases. As the site of cell attachment, proliferation and differentiation, scaffolds composed of biomaterials play a crucial role in BTE. Over the past years, carbon dots (CDs), a new type of carbon-based nanomaterial, have attracted extensive research attention due to their good biocompatibility, unique optical properties, and abundant functional groups. This paper reviews recent research progress in the use of CDs in the field of BTE. Firstly, different preparation methods of CDs are summarized. Then, the properties and categories of CDs applied in BTE are described in detail. Subsequently, the applications of CDs in BTE, including osteogenesis, fluorescence tracing, phototherapy and antibacterial activity, are presented. Finally, the challenges and future perspectives of CDs in BTE are briefly discussed to give a comprehensive picture of CDs. This review provides a theoretical basis and advanced design strategies for the application of CDs in BTE.