Escherichia coli ribonuclease HI (RNH) hydrolyzes the RNA strands of RNA/DNA hybrids in the presence of Mg2+ at the highest level, relative to other metal ions. The Mg2+ binding affinity was 8.39 × 103 M-1, which was lower than those of other metal ions. The low-affinity binder can express the maximum catalytic activity of RNH. The stability of RNH increased with increasing metal ion concentration, except for Zn2+. The thermodynamic origin for enhancing the stability of RNH with Mg2+ was more favorable entropy compared to those with other metal ions, indicating that Mg2+ binding changes the RNH structure while maintaining flexibility. Upon H124A mutation, the metal ion binding affinities decreased for Mn2+ and Zn2+ to a relatively large extent. The present thermodynamic analyses provide information on the structural dynamics of RNH with metal ion exchangeable binding, which can reasonably explain the metal-ion-dependent catalytic activity.
Keywords: Crystal structure; Differential scanning calorimetry; Enzyme; Isothermal titration calorimetry; Metal ion binding; Structural dynamics.
Copyright © 2023. Published by Elsevier B.V.