Remarkably Deep Moiré Potential for Intralayer Excitons in MoSe2/MoS2 Twisted Heterobilayers

Nano Lett. 2023 Feb 22;23(4):1306-1312. doi: 10.1021/acs.nanolett.2c04524. Epub 2023 Feb 6.

Abstract

A moiré superlattice formed in twisted van der Waals bilayers has emerged as a new tuning knob for creating new electronic states in two-dimensional materials. Excitonic properties can also be altered drastically due to the presence of moiré potential. However, quantifying the moiré potential for excitons is nontrivial. By creating a large ensemble of MoSe2/MoS2 heterobilayers with a systematic variation of twist angles, we map out the minibands of interlayer and intralayer excitons as a function of twist angles, from which we determine the moiré potential for excitons. Surprisingly, the moiré potential depth for intralayer excitons is up to ∼130 meV, comparable to that for interlayer excitons. This result is markedly different from theoretical calculations based on density functional theory, which show an order of magnitude smaller moiré potential for intralayer excitons. The remarkably deep intralayer moiré potential is understood within the framework of structural reconstruction within the moiré unit cell.

Keywords: moiré potential; moiré superlattice; transition metal dichalcogenide; two-dimensional materials; van der Waals bilayer.