Facile Synthesis of Tetraphenylethene (TPE)-Based Fluorophores Derived by π-Extended Systems: Opposite Mechanofluorochromism, Anti-Counterfeiting and Bioimaging

Chemistry. 2023 May 8;29(26):e202203772. doi: 10.1002/chem.202203772. Epub 2023 Mar 23.

Abstract

Although remarkable progresses are achieved in the design and development of the mono-shift in photoluminescence for mechanofluorochromic materials, it is still a severe challenge to explore the opposite mechanofluorochromic materials with both blue- and red-shifted photoluminescence. Herein, two unprecedented 4,5-bis(TPE)-1H-imidazole fused pyridine or quinoline-based fluorophores X-1 and X-2 were designed and synthesized, and X-1 and X-2, exhibit completely opposite mechanofluorochromic behavior. Under UV lamp, the color of pristine X-1 changed from blue to green with reversible redshifted 27 nm in fluorescence emission spectra after ground, while the color of pristine X-2 changed from red to yellow with reversible blue-shifted 74 nm after ground. The detailed characterizations (including PXRD, SEM and DSC) confirmed that this opposite mechanofluorochromism was attributed to the transformation of order-crystalline and amorphous states. The crystal structure analysis and theoretical calculation further explain that opposite mechanofluorochromic behavior take into account different π-π stacking mode by induced π-extended systems. In addition, these TPE-based fluorophores (X-1 and X-2) exhibited excellent bio-compatibility and fluorescence properties for bio-imaging, writable data storage and anti-counterfeiting materials.

Keywords: anti-counterfeiting; fluorophores; imaging; opposite mechanofluorochromism; pi-extended systems.