Plant miRNA osa-miR172d-5p suppressed lung fibrosis by targeting Tab1

Sci Rep. 2023 Feb 6;13(1):2128. doi: 10.1038/s41598-023-29188-6.

Abstract

Lung fibrosis, including idiopathic pulmonary fibrosis, is an intractable disease accompanied by an irreversible dysfunction in the respiratory system. Its pathogenesis involves the transforming growth factorβ (TGFβ)-induced overproduction of the extracellular matrix from fibroblasts; however, limited countermeasures have been established. In this study, we identified osa-miR172d-5p, a plant-derived microRNA (miR), as a potent anti-fibrotic miR. In silico analysis followed by an in vitro assay based on human lung fibroblasts demonstrated that osa-miR172d-5p suppressed the gene expression of TGF-β activated kinase 1 (MAP3K7) binding protein 1 (Tab1). It also suppressed the TGFβ-induced fibrotic gene expression in human lung fibroblasts. To assess the anti-fibrotic effect of osa-miR172d-5p, we established bleomycin-induced lung fibrosis models to demonstrate that osa-miR172d-5p ameliorated lung fibrosis. Moreover, it suppressed Tab1 expression in the lung tissues of bleomycin-treated mice. In conclusion, osa-miR172d-5p could be a potent candidate for the treatment of lung fibrosis, including idiopathic pulmonary fibrosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Animals
  • Bleomycin / metabolism
  • Bleomycin / toxicity
  • Fibroblasts / metabolism
  • Fibrosis
  • Humans
  • Idiopathic Pulmonary Fibrosis* / chemically induced
  • Idiopathic Pulmonary Fibrosis* / genetics
  • Idiopathic Pulmonary Fibrosis* / metabolism
  • Lung / pathology
  • Mice
  • MicroRNAs* / metabolism
  • Transforming Growth Factor beta / metabolism
  • Transforming Growth Factor beta1 / metabolism

Substances

  • MicroRNAs
  • Bleomycin
  • Transforming Growth Factor beta
  • Transforming Growth Factor beta1
  • TAB1 protein, human
  • Adaptor Proteins, Signal Transducing