Purpose of review: This article aims to provide an updated overview of the indications for diagnostic breast magnetic resonance imaging (MRI), discusses the available and novel imaging exams proposed for breast cancer detection, and discusses considerations when performing breast MRI in the clinical setting.
Recent findings: Breast MRI is superior in identifying lesions in women with a very high risk of breast cancer or average risk with dense breasts. Moreover, the application of breast MRI has benefits in numerous other clinical cases as well; e.g., the assessment of the extent of disease, evaluation of response to neoadjuvant therapy (NAT), evaluation of lymph nodes and primary occult tumor, evaluation of lesions suspicious of Paget's disease, and suspicious discharge and breast implants. Breast cancer is the most frequently detected tumor among women around the globe and is often diagnosed as a result of abnormal findings on mammography. Although effective multimodal therapies significantly decline mortality rates, breast cancer remains one of the leading causes of cancer death. A proactive approach to identifying suspicious breast lesions at early stages can enhance the efficacy of anti-cancer treatments, improve patient recovery, and significantly improve long-term survival. However, the currently applied mammography to detect breast cancer has its limitations. High false-positive and false-negative rates are observed in women with dense breasts. Since approximately half of the screening population comprises women with dense breasts, mammography is often incorrectly used. The application of breast MRI should significantly impact the correct cases of breast abnormality detection in women. Radiomics provides valuable data obtained from breast MRI, further improving breast cancer diagnosis. Introducing these constantly evolving algorithms in clinical practice will lead to the right breast detection tool, optimized surveillance program, and individualized breast cancer treatment.
Keywords: Breast MRI; Breast cancer diagnosis; Breast cancer surveillance; Dense breast; High-risk women; Multiparametric.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.