Ratiometric Electrochemical Sensor for Butralin Determination Using a Quinazoline-Engineered Prussian Blue Analogue

Materials (Basel). 2023 Jan 23;16(3):1024. doi: 10.3390/ma16031024.

Abstract

A ratiometric electrochemical sensor based on a carbon paste electrode modified with quinazoline-engineered ZnFe Prussian blue analogue (PBA-qnz) was developed for the determination of herbicide butralin. The PBA-qnz was synthesized by mixing an excess aqueous solution of zinc chloride with an aqueous solution of precursor sodium pentacyanido(quinazoline)ferrate. The PBA-qnz was characterized by spectroscopic and electrochemical techniques. The stable signal of PBA-qnz at +0.15 V vs. Ag/AgCl, referring to the reduction of iron ions, was used as an internal reference for the ratiometric sensor, which minimized deviations among multiple assays and improved the precision of the method. Furthermore, the PBA-qnz-based sensor provided higher current responses for butralin compared to the bare carbon paste electrode. The calibration plot for butralin was obtained by square wave voltammetry in the range of 0.5 to 30.0 µmol L-1, with a limit of detection of 0.17 µmol L-1. The ratiometric sensor showed excellent precision and accuracy and was applied to determine butralin in lettuce and potato samples.

Keywords: Prussian blue analogue; butralin; quinazoline; ratiometric sensor.