The increasing availability of high-performance computing (HPC) has accelerated the potential for applying computational simulation to capture ever more granular features of large, complex systems. This tutorial presents Repast4Py, the newest member of the Repast Suite of agent-based modeling toolkits. Repast4Py is a Python agent-based modeling framework that provides the ability to build large, MPI-distributed agent-based models (ABM) that span multiple processing cores. Simplifying the process of constructing large-scale ABMs, Repast4Py is designed to provide an easier on-ramp for researchers from diverse scientific communities to apply distributed ABM methods. We will present key Repast4Py components and how they are combined to create distributed simulations of different types, building on three example models that implement seven common distributed ABM use cases. We seek to illustrate the relationship between model structure and performance considerations, providing guidance on how to leverage Repast4Py features to develop well designed and performant distributed ABMs.