Objectives: Long bone variations during growth are susceptible to the combined action of nutritional, hormonal, and genetic factors that may modulate the mechanical forces acting upon growing individuals as they progressively acquire a mature gait. In this work, we explore diaphyseal length and breadth variations of tibia and fibula during ontogeny (a) to test the presence of changes in relation to early toddling, and (b) to further our understanding of developmental patterns in relation to sex.
Materials and methods: Lengths, breadths, and indices were analyzed on right and left leg bones of 68 subadult individuals (Human Identified Skeletal Collection of the University of Bologna, Italy). Analyses included intersex and age classes (1, 0-1 year; 2, 1.1-3 years; 3, 3.1-6 years) comparisons, linear regressions with age and assessment of correlation among tibial and fibular measurements, as well as principal component analysis.
Results: A significant difference emerged among age class 1 and the others. Age class 1 and 3 differ between them, while age class 2 overlaps with the others. No sex dimorphism was detected. All measurements were strongly correlated with age. Tibial and fibular measurements correlated with each other.
Conclusions: Our results relate the progressive emergence of toddling attempts in growing individuals at the end of the first year of age. No significant sex differences were found, suggesting that tibial and fibula growth might diverge between sexes in later childhood. We provide quantitative data regarding tibial and fibular linear growth and its timing in a modern documented osteological sample from Italy.
Keywords: fibula; linear geometry; motor skill development; prepubertal sex dimorphism; tibia.
© 2021 The Authors. American Journal of Biological Anthropology published by Wiley Periodicals LLC.