Introduction: Activating mutation of the calcium-sensing receptor gene (CASR) reduces parathyroid hormone secretion and renal tubular reabsorption of calcium, defined as autosomal dominant hypocalcemia type 1 (ADH1). Patients with ADH1 may present with hypocalcemia-induced seizures. Calcitriol and calcium supplementation in symptomatic patients may exacerbate hypercalciuria, leading to nephrocalcinosis, nephrolithiasis, and compromised renal function.
Methods: We report on a family with seven members over three generations with ADH1 due to a novel heterozygous mutation in exon 4 of CASR: c.416T>C.
Results: This mutation leads to substitution of isoleucine with threonine in the ligand-binding domain of CASR. HEK293T cells transfected with wild type or mutant cDNAs demonstrated that p.Ile139Thr substitution led to increased sensitivity of the CASR to activation by extracellular calcium relative to the wild-type CASR (EC50 of 0.88 ± 0.02 m<sc>M</sc> vs. 1.1 ± 0.23 m<sc>M</sc>, respectively, p < 0.005). Clinical characteristics included seizures (2 patients), nephrocalcinosis and nephrolithiasis (3 patients), and early lens opacity (2 patients). In 3 of the patients, serum calcium and urinary calcium-to-creatinine ratio levels obtained simultaneously over 49 patient-years were highly correlated. Using the age-specific maximal-normal levels of calcium-to-creatinine ratio in the correlation equation, we obtained age-adjusted serum calcium levels that are high enough to reduce hypocalcemia-induced seizures and low enough to reduce hypercalciuria.
Conclusion: We report on a novel CASR mutation in a three-generation kindred. Comprehensive clinical data enabled us to suggest age-specific upper limit of serum calcium levels, considering the association between serum calcium and renal calcium excretion.
Keywords: Autosomal dominant hypocalcemia; Calcium-sensing receptor; Hypercalciuria.
© 2023 The Author(s). Published by S. Karger AG, Basel.