The optimal SLM conditions of 304L stainless steel were obtained by single factor and orthogonal tests. Results indicated that the optimal hardness (75 HRB) and Relative Density (RD 99.24%) could be obtained when the laser output power was 190 W, the scanning distance was 0.09 mm and the scanning speed was 800 mm/s. The microstructure of fish scales was uniform and compact with a few pores in the optimal sample. The fine particles were randomly distributed near the edge of the molten pool, and some preferred granular columnar crystal structures were formed. Abundant entanglement dislocations were observed between cell structures, forming dislocation clusters. Spherical nano-precipitates, rich in Si, Mn, and O, were also observed near cell structures. The mechanical properties of the specimens were highly anisotropic, and there were obvious necking and ductility at the tensile fracture.
Keywords: 304 stainless steel; mechanical properties; microstructure; selective laser melting (SLM).