A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike

Cell. 2023 Mar 16;186(6):1263-1278.e20. doi: 10.1016/j.cell.2023.02.001. Epub 2023 Feb 13.

Abstract

A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain ∼7,000 distinct amino acid mutations in the context of up to ∼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how ∼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.

Keywords: BA.1; Delta; Omicron; SARS-CoV-2; antibody escape; antibody neutralization; deep mutational scanning; pseudovirus; spike.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • COVID-19*
  • Humans
  • Mutation
  • RNA Viruses*
  • SARS-CoV-2 / genetics

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral